### WATERLOO ENGINEERING





# Objective

To optimize the design parameters of a starch nanoparticle based targeted drug delivery platform for cancer therapy

# Introduction

Cancer will affect 40% of Canadians at some point in their lifetime (www.cancer.ca). Standard chemotherapy treatment of cancer uses anti-mitotic drugs such as docetaxel or doxorubicin which kill cells when they are dividing. This focuses the treatment effects to rapidly-dividing cancer cells; however other cells such as those in hair follicles and the gastrointestinal tract also replicate frequently and are thus attacked by a systemically-dosed drug. Often the administration of chemotherapy is stopped or never started because the risk of taking chemotherapy is considered greater than the potential benefit. Thus there is a need to reduce the dose of chemotherapy drugs without reducing the therapeutic benefit.

In partnership with EcoSynthetix Inc., we have modified their starch nanoparticles into a new targeted drug delivery vehicle we call an "Aptamer Bioconjugate Drug Delivery Device". These nanoparticles use a single-stranded DNA aptamer, codenamed AS1411, as an active targeting system for many different cancer types. They also help reduce the dose of the drug while maintaining its therapeutic effect.



#### **Carrier (EcoSphere® Starch Nanoparticles)**

- Bio-based no toxicity, biodegradable
- Cross-linked mesh allows encapsulation of drug and controlled release
- Uniform small particle size evades clearance and increases cell uptake

#### **Targeting Molecule (DNA Aptamer AS 1411)**

- Binds to Nucleolin receptor, a target in many different cancer types
- Poor *in vivo* lifetime if un-conjugated, while conjugated very stable



#### **Anti-Cancer Drug (Doxorubicin/Adriamycin)**

Currently used in practice - effective at killing cancer cells

# **Targeted Starch Nanoparticles for Cancer Therapy** Nathan Jones, Aareet Shermon, Ryan Wagner, Abdel R. Elsayed

# Free DNA



# Conjugated





2 hours



The drug release studies indicate that the medium crosslinked nanoparticle shows the optimal release characteristics and meets one of our tertiary requirements.

% of

Cells

Contro

Cells)

| Percent<br>Released | 40 |
|---------------------|----|
|                     | 35 |
|                     | 30 |
|                     | 25 |
|                     | 20 |
|                     | 15 |
|                     | 10 |
|                     | 5  |
|                     | 0  |
|                     |    |

#### **Device Properties** Unmodified EcoSphere Size (nm) $169 \pm 15.2$ Zeta Potential (mV) $4 \pm 2.3$

LDH Assay – HeLa Cells (24 hr. exposure) Viable (Relative 20%

**Doxorubicin Dose (ug)** 

# Results

**Device Uptake (HeLa)** 



**Free DNA** 





Conjugated

**48 hours** 

The relative uptake plot indicates that the ratio of 500 glucose units to 1 aptamer unit is the optimal ratio to maximize targeting efficiency while minimizing wasted aptamer – this meets our secondary requirement.



| Carboxylated<br>EcoSphere | Aptamer<br>Bioconjugate |
|---------------------------|-------------------------|
| 141.2 ± 11.2              | 156.2 ± 32.4            |
| -25 ± 0.8                 | -31 ± 1.2               |

#### **Device Viability (HeLa)**



The LDH assay studies the dose vs. response behaviour of our device and shows that it is Free Doxorubicin more effective with a higher dose – this meets our secondary customer requirement.

2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO) oxidizes the starch nanoparticles to create carboxyl groups (-COOH) by the process known as TEMPOmediated carboxylation. NaBr is needed to stabilize this reaction. Hypochlorite (NaClO) initiates the reaction by keeping the pH at 10.2-10.5. HCl lowers pH and reprotonates carboxyl groups.

1-Ethyl-3-(3-dimethylaminopropyl) carbodiimide hydro chloride (EDC) and N-hydroxysuccinimide (NHS) are used to form carboxyl-amino covalent linkages. We use this mechanism to link the carboxylated starch nanoparticle to the 3'-amine-modified ssDNA aptamer.

• O.C. Farokhzad, J.M. Karp, and R. Langer, "Nanoparticleaptamer bioconjugates for cancer targeting.," Expert opinion on drug delivery, vol. 3, May. 2006, pp. 311-24. • A.P. Mangalam, J. Simonsen, and A.S. Benight, "Cellulose/DNA hybrid nanomaterials.," Biomacromolecules, vol. 10, Mar. 2009, pp. 497-504.





# Fabrication

# Conclusions

• Our device met **all** primary (device uptake) and secondary (viability, relative uptake) customer requirements

• Some tertiary requirements were met (pH dependence and varying crosslink density) • The design is patent pending

#### **Plot of different filters for device uptake**



# Acknowledgements

• Professor Juewen Liu and students of Liu Lab • University of Waterloo Fourth Year Design Fund David Donkor

• EcoSynthetix Inc.

Ontario Centres of Excellence - Connections

## References