Aptamer-Bioconjugate Drug Delivery Device

Fourth Year Design Proposal

NE_2012_16

Aareet Shermon \cdot Nathan Jones \cdot Abdel R. Elsayed \cdot Ryan Wagner

Sponsor – EcoSynthetix Inc.

Consultant – Professor Juewen Liu

Nanotechnology Engineering, University of Waterloo

Customer Requirements

Primary :

• Cancer specific targeted drug delivery

Secondary:

- Optimize selectivity of delivery device
- Show dose/response characteristics

Tertiary:

Show stability under different operating conditions

Expected Design Issues

• Characterizing efficacy

WATERLOO

NGINEERING

- Compatibility of individually successful systems
- Being aware of FDA requirements
 - Current Good Manufacturing Processes
- Cost of device development and testing
- IP management of drug and aptamer

Contingencies

If unable to achieve conjugation of aptamer:

- Conjugate to high Z material (TiO₂, Fe) for use as imaging aid/ radiation sensitizer
- Switch to different aptamer also shown to be successful
 - Breast cancer Osteopontin
 - Colorectal cancer Beta-Catenin
 - Generic cancer (Human Epidermal Growth -3, Sialyl-Lewis x, Nucleolin, etc.)

The Proposal

Aptamers

- ssDNA/RNA oligomers of 20-70 nucleic units
- Take tertiary structure to specifically bind to targeted cell surface
- Matched to target by Selective Evolution of Ligands by Exponential Enrichment (SELEX) process
- Our choice: sgc4 DNA aptamer which binds to leukemia cells
- Poor biological lifetime if nonconjugated

EcoSphere[®]

- EcoSphere[®] is a product of EcoSynthetix
- Cross-linked starch nanoparticle (~120 nm)
- Tested in drug delivery systems (Duke University)
 - Proven to be non-toxic (biological components)
 - Can carry drug for delivery applications
 - Long biological half-life
 - Size advantage

Schematic - Device

Design Verification

Cell culture experiments with fluorescence microscopy

Control refers to non-cancer cells Target refers to cancer cells

MERS FROM PLANET EARTH

Materials Budget

	Quantity	Price (CAD)	Supplier			
Aptamer	1 µg	\$151.28	IDT			
Doxorubicin	100 mg	mg \$360.00 Selleck (
Ecosphere	Unspecified	Supplied	EcoSynthetix			
TEMPO	25 g	\$265.00	Sigma-Aldrich			
NaBr	100 g	\$50.10	Sigma-Aldrich			
NaClO (Store @2-8 C)	250 mL	\$40.80	Sigma-Aldrich			
HCl (Bioreagent)	300 mL	\$76.50	Sigma-Aldrich			
EDC	5 g	\$151.00	Sigma-Aldrich			
NHS	25 g	\$53.90	Sigma-Aldrich			
MATERIALS SUBTOTAL		\$1148.58				
WATERLOO		ECOS	SYNTHETIX®			

ENGINEERING

ADVANCED POLYMERS FROM PLANET EARTH®

HR & Equipment Budget

	Price (CAD)	Supplier
Human Resources & Intellectual Property		
Consulting with Ecosynthetix	Supplied	EcoSynthetix
(Provisional Patent Filing Costs	\$4500	Gowlings)
Equipment		
Fetal Bovine Serum	\$310.00	ATCC®
T-ALL cell line	\$265.00	ATCC®
Confocal Microscope (5 hours + hour training)	\$475	UW Biology
Cell Culture Equipment and Lab Space	Supplied	Consultant
Penicillin G sodium salt (Bioreagent, 100MU)	\$120.50	Sigma-Aldrich
HR & Equipment SUBTOTAL (not including patent costs – Industrial Sponsor)	\$1170.50	
WATERLOO		

Budget Overview

	Price (CAD)
MATERIALS SUBTOTAL	\$1148.58
HR & Equipment SUBTOTAL	\$1170.50
30% Shipping and Handling plus Taxes (not on microscope)	\$659.57
30% Contingency Factor (After S&H plus taxes)	<u>\$893.60</u>
Total Projected Budget	<u>\$3872.25</u>

External Sources of Funding: Industrial Sponsorship, Engage Grant, NSERC Grant

Timeline

Sept-2011 to April 2012	September (October			•	Novembe	er	December			r		
Week	1	2	3	4	5	6	7	8	9 10 11	12	13	14	15	16
Milestones									Test phase					
									Engineering	g pha	ase			
Design system compatibility									Material pr	ocui	reme	ent p	hase	\$
Order materials									Design pha Buffer time	ise	_			
Ensure biocompatibility														
Design dose-release characteristics														
Order materials														
Characterize device parameters														
Dose-release response														
Targeting accuracy														
Commitments														
Midterms														
Finals														
		in the		2				int	in 27					

Timeline

Sept-2011 to April 2012	January		February				March					
Week	17	18	19	20	21	22	23	24	25	26	27	28
Optimize device parameters												
Dose-release response												
Targeting accuracy												
Device functionality testing												
Efficacy testing												
Stability testing												
Commitments												
Midterms												
Finals												
WATERLOO						art 1	1		5	1	r.	
ENGINEERING						EC	05	3YN	1TF	HE	ΓΙΧ	®

ADVANCED POLYMERS FROM PLANET EARTH®

Sources of Information

[1] J. a Phillips, D. Lopez-Colon, Z. Zhu, Y. Xu, and W. Tan, "Applications of aptamers in cancer cell biology,," *Analytica chimica acta*, vol. 621, Jul. 2008, pp. 101-8.

[2] D. Shangguan, Y. Li, Z. Tang, Z.C. Cao, H.W. Chen, P. Mallikaratchy, K. Sefah, C.J. Yang, and W. Tan, "Aptamers evolved from live cells as effective molecular probes for cancer study.," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 103, Aug. 2006, pp. 11838-43.

[3] M. Blank, T. Weinschenk, M. Priemer, and H. Schluesener, "Systematic evolution of a DNA aptamer binding to rat brain tumor microvessels. selective targeting of endothelial regulatory protein pigpen.," *The Journal of biological chemistry*, vol. 276, May. 2001, pp. 16464-8.

[4] N. Dave, M.Y. Chan, P.-J.J. Huang, B.D. Smith, and J. Liu, "Regenerable DNA-functionalized hydrogels for ultrasensitive, instrument-free mercury(II) detection and removal in water.," *Journal of the American Chemical Society*, vol. 132, Sep. 2010, pp. 12668-73.

[5] O.C. Farokhzad, S. Jon, A. Khademhosseini, T.-N.T. Tran, D. a Lavan, and R. Langer, "Nanoparticleaptamer bioconjugates: a new approach for targeting prostate cancer cells.," *Cancer research*, vol. 64, Nov. 2004, pp. 7668-72.

[6] O.C. Farokhzad, J.M. Karp, and R. Langer, "Nanoparticle-aptamer bioconjugates for cancer targeting.," *Expert opinion on drug delivery*, vol. 3, May. 2006, pp. 311-24.

[7] A.P. Mangalam, J. Simonsen, and A.S. Benight, "Cellulose/DNA hybrid nanomaterials.," *Biomacromolecules*, vol. 10, Mar. 2009, pp. 497-504.

[8] Y. Wu, K. Sefah, H. Liu, R. Wang, and W. Tan, "DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells.," *Proceedings of the National Academy of Sciences of the United States of America*, vol. 107, Jan. 2010, pp. 5-10.

Questions?

